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The angular debendence of the superconducting nucleation field of a system with two inter-
secting vacuum faces is investigated. Within the framework of the simple Ginzburg-Landau
theory using a trial-function approach, it is shown that superconductivity can nucleate along
the edge of a wedge-shaped geometry in fields H,, above H.3. This nucleation field is calcu-
lated for different angles of the wedge and different directions of the field. The effect is
studied experimentally on evaporated films with wedge-shaped edges produced with the use

of a shadowing technique.
basis of a H,4 model.

I. INTRODUCTION

The surface superconductivity in fields greater
than H.; has recently attracted a great deal of in-
terest.! Since the discovery of Saint-James and
de Gennes? that the presence of a vacuum interface
enhances the nucleation field, it was obvious to
suspect that two intersecting vacuum interfaces
might enhance the nucleation field even more.
Houghton and McLean® and van Gelder? have calcu-
lated this nucleation field for a wedge-shaped
geometry, which was referred®to as H,,. They
find that for small values of the angle 2a between
the vacuum interfaces

Hc4? (%\[3 a)ch ’ (1)

where H,, is the bulk-nucleation field v 2xH, [« is
the Ginzburg-Landau (GL) parameter, H, the ther-
modynamic critical field]. It has been emphasized
by Fink® that H,, has nothing to do with a new mech-
anism of nucleation; H,, lies entirely within the
framework of the GL theory, ® which for an infinite
slab of thickness d, with the applied field parallel
to the surface planes in the limit d <<¢, where &

is the GL coherence length, gives a nucleation

field

H,=(12)"2(¢/a)H,, . (2

As has been noted by Fink, ° a wedge-shaped speci-
men with almost parallel surfaces can be approxi-
mated by a slab with an effective thickness d and
then Eqgs. (1) and (2) are equivalent. A variational
calculation for d as a function of a was carried out
by van Gelder.* It is intuitively clear and follows
from the calculations that superconductivity nu-
cleates along the wedge in a “line” of thickness of
the order £, It is the purpose of the present paper
to study the dependence of H,, as a function of the
angle between the wedge and the applied field, and
to look into the possibility of observing H,, experi-
mentally.”

4

It is shown that the experimental results can be explained on the

II. CALCULATION OF ANGULAR DEPENDENCE
OF H
c4

Our calculations are based on the variational
formulation® of the problem of nucleation of super-
conductivity. . We consider the Ginzburg-Landau®
Gibbs free energy AG between the superconducting
and the normal phases. Nucleation becomes pos-
sible when AG vanishes, i.e.,

k=2 [dr (Vf)2+ [ar[(B+k-1V8)2-1]f%=0. (3)

Here, f(z't) is the modulus of the order parameter
and &(r) is its phase. As a unit of length, we use
the weak-field penetration depth, such that the mag-
netic field varies typically like e ™% near a vacuum
interface while n is the unit vector normal to the
surface. The vector potential A(F) is chosen to
represent a homogeneous applied static magnetic
field i = rotA of arbitrary direction. This choice
is the same as in Ref. 8 and is only motivated for
a study of the onset of nucleation. The unit for A
and hence for H is such that the bulk critical field
H,=1/+v2. The system which we consider is
bounded by the planes characterized by ¢ =+ a in
cylindrical coordinates {r, ¢, z} (Fig. 1). Along
the x,y and z directions, the applied field has the
following components:

H,.=H siny cosf3 ,
H,=Hsinysing , (4)
H,=Hcosy .

The angle between H and the z axis is y, and the
angle with the xz plane (¢=0) is B. We choose a
gauge where this field is represented by the vector
potential A given by

A4,=0,
A,=3Hrcosy , (5)
A,=Hvsinysin(g -8) .
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FIG. 1. Geometrical situation.

A reduction of the unit of length by a factor (xH)!/2
in Eq. (3) gives

> e a2 E;iz)z (l 122)2
fd'r (Vr) +f dr[( 5,) +\E7cosy+ ”
) 2
+<rsinysin(<p -B)+ 5§> —E]fz=0 , (6
where E is defined as
E=x/H=H,/H. (7

Since the current density components normal to
the vacuum interfaces must vanish, we get for
£(r) and &(r) the boundary conditions

of A I 4
a‘ﬂ Y =ta or r=0 or r=0
and (8)
1) 12
- ==3Y"C0oSYy .
P | pose z 4

The variational method gives an upper bound for

the smallest value of E for which Eq. (3) is satisfied

and nucleation along the wedge can occur. For this
purpose we substitute the following trial functions
into Eq. (6):

f&)=f@r), ®(F)=-3r2aF(p/a)+mz, (9)

with m a constant and, in order to satisfy the
boundary conditions, F'(x1)=cosy. This choice of
trial functions is intended to study the possibility
of nucleation along a wedge only, and is not ex-
pected to describe nucleation at the plane vacuum
interfaces ¢ =+ @ at H,;. The ansatz of Eq. (9) is
only useful for small values of «; in fact, if 2a
>176°,* the nucleation fields are not expected to
exceed H.; so that this nucleation can only occur at
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the surfaces ¢ =+ a. Substitution of Eq. (9) into
Eq. (6) gives

K cij:a 2 3 2 2. | =
j; dr[(dr) r+Pfer - 2mQrir +(m2—E)f7’]-0 )

(10)
with
+ +1
P=3a? fll Fix)dx+% fl [F'(x) - cosy]Pax

+ 3sin% {1 - [(sin2a)/2a] cos28}, (11)
Q= siny sinBsina/a . (12)

If y=0, as in the case of Refs. 3 and 4, it is pos-
sible to show analytically, that the lowest value

of E for which Eq. (10) is satisfied corresponds to
a function f(») which is of the form exp[-3 (r/1a)?],
where 1la is a constant. The problem of finding the
smallest value of E for which Eq. (10) is satisfied
is equivalent to minimizing the functional on the
left-hand side of Eq. (10) with respect to f, con-
sidering E as a Lagrange multiplier. If y=0, E
attains a minimum when m =0. Variation of Eq.
(10) with respect to f leads to the condition that

uZ—E%+(1—2u)Z—§+ZMg=0, (13)
where
u=3r2P, (14)
glu)=e"flr) , (15)
=—++E/4VP . (186)

Equation (13) has two solutions, one of which is
singular at #=0, because the Wronskian is ¢**/u. The
other solution increases exponentially like ¢ as
u—, unless M is a positive integer or zero. The
lowest value of E corresponds to the eigenvalue
M =0 for which glu)=1. Larger eigenvalues
[e.g., M=1, gu)=1 - 2u] suggest the existence of
metastable normal solutions below H,,, nucleation
becoming possible at H=H,,/(2M +1) where M =0,
1,2,

It is therefore reasonable to choose for f(r) a
function of the type exp[ - 3(7/a)?], whether y is zero
or not. This gives

E=1/a®+Pa? -mQaVn +m?. amn
Therefore, the smallest value of E is
E=(4P-7Q3'2, (18)

@ can be calculated for a given orientation of ﬁ,
but P is still a functional of F, and E has to be mini-
mized with respect to this functional. Making use
of the boundary conditions for F, ‘we get

cosy sinh2ax

P02 50" “coshza - (19)
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FIG. 2. Calculated H,y/H,, as a function of the wedge
angle for y=0.
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Consequently P becomes

1 B tanhZa)
p= 4cos2'y( 1 S

+3 sin2~/<1 _ sinZa COSZB)

2« (20)

A lower bound for the nucleation field H,, is hence
found to be
(He/He) =E™' = (4P -7Q%)V/2, (21)

where P and @ are functions of @, 8, and v [Egs.
(20) and (12)]. In Figs. 2-4, H,/H,, is plotted for
several geometrical situations. It is interesting to
note that for 8=0° and for small angles of «, H,,
depends very little on .

III. EXPERIMENTAL RESULTS

It is clear from our trial-function solution that
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superconductivity just below H., should be localized
along the wedge, roughly within the GL coherence
length around the edge. Therefore, the radius of
curvature of the edge (“sharpness” of the edge)
should be smaller than, say, ~1000 A. Preliminary
investigations on mechanically cut bulk supercon-
ductors failed to show any reproducible effects.®
We decided therefore to look into the edges of thin
films.

The films are prepared in the form of strips by
vacuum evaporation of indium at a pressure of
about 107® Torr onto microscope slides through a
mask which was slightly removed from the substrate.
Because of the well-known shadowing effect, !° the
edges of the film are not completely sharp but show
a wedgelike geometry of the type we would like to
study (Fig. 5). The thickness of the films was
measured interferometrically, using a Varian A-
scope multiple-beam interferometer.

As a first step, we repeated the well-known ex-
perimeni:10 of measuring the parallel (y=90°,
B=~0°) and perpendicular (y=90°, §=~90°) critical
field of such a wedge-shaped film. In order to
compare with the critical fields of the film without
a wedge, two identical films were evaporated
simultaneously next to each other, and one of them
was trimmed with a razor blade. In Figs. 6 and 7,
we show recorder tracings of the resistance transi-
tion vs magnetic field in the parallel and perpen-
dicular positions for a trimmed and an untrimmed
film. There is an obvious difference in the critical
fields of the two films in the case with the field
parallel to the films, while in the perpendicular
case the two critical fields seem to be equal.
These well-known results can be interpreted with
the theory of Sec. II according to which the film
edges are superconducting until H,, is reached.
Ideally, the edges of the trimmed film have two

— I
N

FIG. 3. Calculated angular depen-
dence of H,/H, for v=90°
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wedges for which 2a=90°. The field directions
for the parallel and perpendicular cases correspond
to y=90°, B=45° for these wedges. However, as
can be seen from Fig. 3, the critical field of these
wedges does not exceed the critical field H,, of the
film. The latter field, as given by the Tinkham
theory!! 2 for thin films (although one might argue
about the applicability of this theory for our rather
thick films), is H., = H,, for the perpendicular
case, whereas it is given by H, =H, [Eq. (2)] for
the parallel one. The situation is quite different
for the untrimmed film (@ small) in a parallel field
(8~ 0°), because here the nucleation field H,, of
Eq. (21) exceeds that of the film. This prediction
seems to be confirmed by the experiment (Fig. 7).
For the parallel position in the trimmed case, the
critical field H,=H, is given by Eq. (2), while in
the untrimmed case, according to Eq. (21), H,,/
Hy,,=E~Ya,B=0°, y=90°). Using the measured
values of H., and H_, and Fig. 3, we get an angle

of 2a~30°. An attempt to measure the angle 2«
interferometrically was not very successful, owing
to a fuzzing out of the film at the edge [Fig. 5(c)].
20’ seems to be of the order of 1°, while 2a might
be of the order of 10°, We realize of course that

this does not in any way prove the existence of some-

thing like H,,; everything could equally well be
explained by assuming that the edge corresponds
to a steplike geometry as shown in Fig. 5(b) and as
suggested by Fink.® This would correspond to two
(or more) parallel films with thicknesses d and

d, where the critical fields are given by Tinkham-
type'® 2 formulas. However, this would no longer
be true if we vary the angle y: For a film, there
should be no difference in the critical field if the
field moves in the plane of the film; for the wedge
geometry however, Fig. 4 shows that there is a
variation of H,, with v.

In order to check this possibility, we evaporated
a square film as sketched in Fig. 8, again using the
shadowing technique by slightly removing the mask.
The current I was passed through one diagonal of
the square, while the voltage V was measured over
the other diagonal. Owing to the symmetry of the
configuration, there should be no voltage if the
square is entirely normal or entirely supercon-
ducting. However, if part of the film is normal,
the symmetry is distorted, the corners are no
longer equipotential points, and a voltage should
be detectable. If again we assume our H., model
to be valid for this square film (i.e., homogeneous
with wedge-shaped edges), for the edges a and b,
we have y=90° and B is variable, while for the
edges ¢ and d, y is variable and $~90°. The value
of B for a and b is equal to the value of y for ¢ and
d (Fig. 8). Using our trial-function solutions, we
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FIG. 5. Edges of films. (a) Typical cross section of
evaporated film, showing tapered edges. Right-hand edge
has been trimmed.. (b) Approximation of an edge with two
plane parallel films of thickness d and d. (c) Fuzzing out
of edge.
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100 Gauss
trimmed
untrimmed

can calculate H,,/H,, as a function of & and B.

This is shown in Fig. 9; as can be seen from this
tigure, H,, (cd) is bigger than H,, (ab). If g in-
creases, the difference between the two values for
H,, gets smaller. For values of a@=~10° (which
should roughly correspond to the experimental
situation) at angles of 3~60°, the difference is
smaller than about 0.5% and should no longer be
detectable with our experimental setup. In Fig.
10, we show recorder tracings of the voltage over
the diagonal versus the magnetic field for different
values of angle 8. There is definitely an asym-
metry which leads to peaks in the signal; the
critical fields decrease as 8 increases, and for
angles of the order of 8> 60°, no asymmetry in the
square film can be detected any more.

We would like to emphasize once again that this
is certainly no conclusive proof of the existence of
H,,. Small inhomogeneous parts in the inside of
the film would also lead to asymmetric situations
which result in signals. By trimming the edges of

100 Gauss
o |

trimmed

untrimmed

B

FIG. 6. Recorder tracings of resis-
tance transition vs magnetic field for
a trimmed (8=45°) and untrimmed
(B~ 0°) indium film with the field in
the plane of the film (y=90°). Mea-
suring current I=5 pA, temperature
T=0. 84T,, thickness d=~7500 A.

the square film, we could reduce the signals; how-
ever, we were unable to create an entirely sym-
metric situation (i.e., no signals for all fields and
all values of g8) for trimmed films.

In order to check the angular dependence of H,,
quantitatively and to discriminate against the
angular dependence of the critical field of the
“bulk” film, we measured the two critical fields
(of the film or the edge) simultaneously. The
critical field of the interior of the film was mea-
sured using a tunneling-junction geometry (Fig.
11). First we evaporated an aluminum film as one
side of the junction and let it oxidize. On top of
it we evaporated the indium film to be studied,
again using the shadowing technique. The Al-Al,0;-
In junction has then the whole interior of the film
to be studied as one electrode; this junction should
then measure an averaged bulk property of this
film. The critical field of the film was determined
by measuring the derivative (dV, /dI;) at zero bias
Vr =0 as a function of the magnetic field. At the

FIG. 7. Recorder tracings of re-
sistance transition vs magnetic
field for a trimmed (8=245°) and an
untrimmed (8= 90°) indium film with
the field perpendicular to the plane
of the film (y=90°). Measuring cur-
rent I=5 pA, ‘temperature T'=0. 847,
thickness d=7500 A.
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FIG. 8. Geometrical situation for a square film. p=20°
same time, the critical field of the edge was mea- p=30°

sured with the simple dc technique by passing a

current I; and measuring the voltage V. All

measurements were done at temperatures where p=40°

the aluminum film was in the normal state.

During the measurements, the magnetic field was p=50° ”WMW
always perpendicular to the edges of the film "

(y=90°), while the angle g was varied between 0° p=60 Ww%
(position of the field parallel to the film) and 90° g=700 WWW%
‘(position of the field perpendicular to the film). 3800 A N

For the simple dc resistance measurements, we
B=90° WMMM

FIG. 10. Recorder tracings of the diagonal voltage of
i a square indium film as a function of the magnetic field
c2 for different angles B. Measuring current I=0.5 mA,
temperature T'=0.867T,, thickness d= 8000 A,

expect an angular dependence of the critical field
of the edges as given by our H,, model [Eq. (21),
Fig. 2]:

H.y/H5=[E(2a, B, 7=90°)]"", (22)

while for the tunneling measurements, the angular
dependence of the critical field H,,(8) of this film
should be given by a Tinkham-type'!’ 2 formula:

. 2
i el G ) I PR

where H,,, is the perpendicular and H,, the parallel
critical field of the film.

oL L — . In Fig. 12, we plotted the critical fields as mea-
0 30 60 90 sured with tunneling as a function of the angle B.
8 The theoretical curve H, is given by Eq. (23) and
FIG. 9. Theoretical curves of H,, as a function of 8 adjusted at the two points Hgy =H,(0°) and H,
for the two pairs of edges (z b) and (c d) of Fig. 8 for dif- =H,(90°). The agreement is satisfactory, as is

ferent values of the wedge angle . well known from the extensive studies of Harper
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Al film
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FIG. 11. Tunneling setup to measure the critical field
of the edge H,, and the critical field of the film Hy simul-
taneously. Tunneling: voltage over Vjp, current through
Ip; dec resistance measurements: voltage over Vg, cur-
rent through I5.

and Tinkham.'? As another check, the thickness
'd of the film should be given by'!

60, H 1/2
d=(f—£-—%ﬂ) (24)
m Hetu ’
where ¢, is the quantum of flux. Using our experi-
mental values of Hy, and H,, we get d=2500 A,
while the interferometric measurements lead to a
value of d ~ 2800 A. Again, the agreement is satis-
factory.

In Fig. 13, we plot the critical fields as de-

termined by the simple dc resistance measurements.

In the same figure, we also plot a theoretical
H,,(B) curve, adjusted at the two points H,,(0°) and
H,,(90°). The agreement is reasonable, and the
resulting angle of @=~16.7° is not unrealistic (an
attempt to measure « interferometrically again
failed due to the fuzzing out at the edge). The the-
oretical curve marked H is a Tinkham-type rela-
tion [Eq. (23)], again adjusted at the two points
H,(0°) and H,(90°). The agreement is somewhat
less satisfactory, which means that our results

can better be explained by assuming a wedge-shaped
geometry instead of a simple film geometry. It
has to be noted that an absolute measurement of the
critical field of a film using our tunneling technique
is very inaccurate, because the superconducting
normal transition curve is very broad owing to the

VAN GELDER, HENDRIKS,
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FIG. 12. Experimental values of the critical field of
the film as measured with the tunneling junction. The

curve labeled He is calculated from Eq. (23) and adjusted
for B=0° and B=90°.

gapless situation; this is not very serious for rela-
tive measurements such as angular dependence,
where the same well-defined (say 50% of the transi-
tion), but somehow arbitrary point on the transition
curve can always be used to define an H,(8). How-
ever, this does not make a comparison between

Hey, (Gauss)
250k

200
150

100

75 L -
0° 30° 60° 90°
8
FIG. 13. Experimental values of the critical field of

the edge of a film as measured with de. The curve la-
beled H,, is calculated from Eq. (21), and the curve H;
is calculated from Eq. (23); both are adjusted at f=0°
and B=90°.



4 ANGULAR DEPENDENCE OF H,,

measured absolute values of H., and H,, very
meaningful.

In conclusion, we would like to note that we cer-
tainly do not believe we have proved experimentally
the existence of something like H ., unambiguously.
Most of our experiments can be explained by as-
suming inhomogeneous parts in the bulk of the films.
However we think we have shown that wedge-shaped
geometries behave differently from film geometries

2957

in magnetic fields, and it may even be that inhomo-
geneous parts can be considered as wedge shaped,
which would correspond to an H,, model.
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Neutron scattering experiments have been carried out on a single crystal of NbsSn through
the lattice-dynamical phase transition at 7, =45°K. A small tetragonal lattice distortion,
a/c=1.0062 at 4°K, was previously established by x-ray studies, but sublattice displacements
below T,, have remained undetermined. The present study reveals that the tetragonal phase

exhibits new Bragg reflections, which are forbidden by symmetry in the cubic phase.

From

the intensity distribution among these new reflections, the structure was determined uniquely

as DZ,, with Nb displacements from the special positions of 0.016(3) A at 4°K. Only the Nb sub-
lattices shift, and in a patternidentical with the eigenvectors of the I'y5(+) ¢ =0 optic~phonon mode
in the cubic phase. Such a mode is linearly coupled with the soft [110] shear acoustic mode.
This linear coupling requires, and our measurements confirm, that the intensities of new Bragg
peaks are proportional to (a/c —1)%. An optic-phonon instability is not required to explain these

internal displacements.

I. INTRODUCTION

In recent years, extensive investigation has been
carried out on many lattice-dynamical phase tran-
sitions. One of the most fascinating phase transi-
tions known of this type occurs in high-temperature
superconductors with the g-W structure (type
A-15).! This phase transition takes place, on cool-
ing, before the onset of the superconducting state.
It is accompanied by a remarkable elastic soften-
ing, in particular, for shear modes with wave vec-
tor qI1[110] and polarization vector € Il [110]. For
example, in the case of NbySn, the acoustic velocity?

falls from a normal room-temperature value to
near zero around T, =45°K. The crystal is cubic
above T,, and becomes tetragonal® below T,, with
a/c=1.0062 at 4 °K,

Many experimental and theoretical studies have
been published? on this phase transition in NbySn,
as well as on the similar transition in V3Si at 21
°K. There are, nevertheless, fundamental ques-
tions concerning the nature of the transformation
which remain unsolved. Anderson and Blount®
pointed out that if the phase change is truly of sec-
ond order the tetragonal strain cannot be the pri-
mary-order parameter, and they raised the pos-



